发布时间:2024-02-17 浏览次数:120
报告题目: Pullback attractors for 2D MHD equations on time-varying domains
报告人: 宋小亚讲师
报告人单位: 亚洲博彩网站-博彩网
报告日期: 2023年11月9日 星期四
报告时间: 15:00-16:00
报告地点: 励学楼B219
报告人简介: 宋小亚,亚洲博彩网站-博彩网 讲师,主要研究方向是非线性泛函分析与无穷维动力系统。2019年博士毕业于兰州大学,师从孙春友教授。2019年7月-2021年11月于广州大学做博士后,合作导师是曹道民教授。主要研究结果发表在Discrete Contin. Dyn. Syst.,J. Math. Phys.,J. Math. Anal. Appl.,Nonlinear Anal. Real World Appl.等期刊上。主持国家自然科学基金-青年科学项目,中国博士后科学基金面上项目,河海大学中央高校基本科研业务费项目等课题。
报告摘要: In the present paper, we consider the asymptotic dynamics of 2D MHD equations defined on the time-varying domains with homogeneous Dirichlet boundary conditions. First we introduce some coordinate transformations to construct the invariance of the divergence operators in any n-dimensional spaces and establish some equivalent estimates of the vectors between the time-varying domains and the cylindrical domains. Then, we apply these estimates to overcome the difficulties caused by the variations of the spatial domains, including the processing of the pressure p and the definition of weak solutions. Detailed arguments of converting the equations on the time-varying domains into the corresponding equations on the cylindrical domains are presented. Finally, we show the well-posedness of weak solutions and the existence of a compact pullback attractor for the 2D MHD equations。